Journal of Thermal Analysis, Vol. 40 (1993) 29-40

Earth Sciences

DETECTION OF AMMONIUM IN GEOLOGICAL MATERIALS BY EVOLVED GAS ANALYSIS

S. Inglethorpe and D. J. Morgan

BRITISH GEOLOGICAL SURVEY, KEYWORTH, NOTTINGHAM NG12 5GG, UK

The association of anomalously high levels of ammonium with both metallic and energy mineral deposits is of potential use in mineral exploration. Conventional geochemical methods for detecting NH4 often provide only whole-rock NH4 values and do not identify the specific minerals hosting NH4. They may also lack sensitivity or be prone to interference. Evolved NH3 analysis is shown to be capable of distinguishing between different NH4-bearing minerals and can detect NH4 values down to 120 ppm in rocks hosting silver-gold vein mineralization. Fully quantitative determination of NH4 by this method is not possible as the NH3 evolved from minerals during heating partially oxidised; however, amounts of evolved NH3 do show a moderate positive linear correlation with NH4 content determined by a modified Kjeldahl method.

Keywords: evolved gas analysis, geological materials, IR, NH4-bearing minerals

Introduction

Interest in the distribution of ammonium in geological materials has centred on anomalously high concentrations of NH₄ associated with host rocks of precious and base-metal mineralisation [1-4], coal and oil shale deposits [5, 6], NH₄ minerals and nitrogen-rich fluid inclusions in very low-grade metamorphic rocks [7], and NH₄ as an indicator of organic maturation and hydrocarbon generation [8].

The NH^{\ddagger} ion has a tetrahedral structure with an ionic 'radius' of 1.48 Å and similar geochemical behaviour to Group I trace elements Rb⁺ and Cs⁺. Because of this, it substitutes for K⁺ in silicate and sulphate minerals, including NH₄-feldspar

(buddingtonite) [5, 9–11], NH₄-mica (tobelite) [12], NH₄-illite [2], NH₄-alunite [13] and NH₄-jarosite [14].

A number of analytical methods have been used to detect NH_4 in rocks and minerals. Infrared (IR) spectroscopy [10] is subject to potential interference from carbonates [15]; it is reported that remote sensing of NH_4 by IR is only sensitive at NH_4 concentrations > 900 ppm [16]. The Kjeldahl wet chemical method is probably the most widely used, but NH_4 values do vary depending on the dissolution procedure [17]. C-H-N analysis is used to determine total N content [1], but is considered to be suitable only for samples containing > 3000 ppm NH_4 [17].

Evolved gas analysis (EGA) has not been widely used as a geochemical technique. However, Roche *et al.* [15] demonstrated the usefulness of pyrolysis-mass spectrometry determinations of NH₄ as a lithochemical indicator of mineralisation, and Shepherd *et al.* [18] suggested that EGA has potential for identifying subtle zones of hydrothermal alteration adjacent to vein mineralisation not evident from trace element indicators.

The aims of the present investigation were to (i) examine the evolution of NH_3 induced by heating NH_4 -bearing minerals and rocks; (ii) discover if NH_3 evolution peaks are diagnostic for specific ammonium host minerals, and (iii) compare the sensitivity of EGA with that of the Kjeldahl method for determining NH_4 .

Samples

Four ammonium minerals were examined in which NH⁴ has completely substituted for K⁺; these minerals contain between 3.8 and 7.0% NH₄. A batch of samples adjacent to a silvergold deposit at El Cubo mine, Guanajuato, Mexico containing 120–1000 ppm NH₄, were also analysed to examine the effectiveness of the method in an exploration context.

Ammonium minerals

Buddingtonite [NH4AlSi3O8 · 1/2H2O]

This is the NH₄ analogue of monoclinic microcline feldspar from the type locality, Hg-bearing springs, Sulphur Bank, California [9, 10]. The sample contains minor pyrite; the $\frac{1}{2}$ H₂O has been attributed to montmorillonite impurity [11].

Synthetic NH4-illite [ideal formula NH4Al2(Si3,Al)O10(OH)2]

This sample has been described by Krohn & Altaner [10]. NH₄-illite has also been noted at the Lik stratiform exhalative base metal (Pb-Zn-Hg) deposit hosted in Mississipian black shales and cherts in the De Long mountains of NW Alaska [2], and in mudrocks in the anthracite/semi-anthracite coal measures of NE Pennsylvania [6], where co-existing mineral assemblages and coal rank suggest a very low-grade metamorphic environment.

NH4-alunite [(NH4)0.92K0.02Na0.02Al2.88(SO4)2.00(OH)6]

This sample is from hot sprigs at the 'Geysers', Sonoma County, California [13].

NH4-jarosite [ideal formula (NH4)Fe₃(SO4)₂(OH)₆]

This sample comes from solution hollows at the junction of the Upper Chalk with overlying Tertiary sediments at Newhaven, Sussex (S Kemp, pers. comm.), and was identified from its X-ray diffraction pattern which closely matches the Joint Committee for Powder Diffraction Standards (JCPDS) reference pattern 26-1014.

El Cubo mine samples

Anomalously high levels of NH₄ are associated with wall rocks adjancent to gold-silver mineralisation at El Cubo mine, Guanajuato, Mexico [16, 19]. The samples investigated were collected along subsurface traverses perpendicular to mineralised veins at 60, 110, 160 and 190 m below the surface (mine levels 0, 1, 2 and 4 respectively). The deposit is hosted by the Peregrina Intrusive (mine levels 0, 1 and 2) and Guanajuato Red Conglomerate (mine level 4). NH₄ anomalies associated with silver deposits of the region are often broader than anomalies from other major and trace element indicators, and show a more consistent relationship to the vein mineralisation [16, 19].

Methods

The full EGA system has been described previously [20]; some modifications to procedure were made for the present investigation. Samples were heated in a tube furnace at 50 deg min⁻¹ and volatiles transported by a carrier gas flowing at 300 ml·min⁻¹ to non-dispersive infrared detectors for NH₃, H₂O and SO₂ arranged in series. The carrier gas was either N₂, or a 2:1 mixture of N₂ and O₂. Variations in evolved volatile concentrations in the carrier gas were continuously monitored on a multi-channel chart recorder against sample temperature. The mass of H₂O released was calculated by comparing its peak area with that of the H₂O evolution peak of sodium bicarbonate; the mass of NH₃ released was determined using an empirical method [20].

Results and discussion

Ammonium minerals

Volatile evolution profiles obtained for the pure NH₄-minerals in N₂ and mixed N₂/O₂ atmospheres are shown in Fig. 1. Theoretical decomposition mechanisms for these minerals are summarized in Table 1. Table 2 contrasts the NH₃ and H₂O contents measured by evolved gas analysis with the theoretical values. It is apparent from the data in Table 2 that the amount of NH₃ detected is less than theoretically predicted, and also that the amount of H₂O detected is greater.

Fig. 1a Evolved gas profiles of ammonium minerals. 20 mg samples analysed in N₂ (left) and mixed N₂/O₂ atmosphere (right). Key: NH₃ - solid line, H₂O - dashed line, SO₂ - dotted line

Fig. 1b Evolved gas profiles of ammonium minerals. 20 mg samples analysed in N₂ (left) and mixed N₂/O₂ atmosphere (right). Key: NH₃ - solid line, H₂O - dashed line, SO₂ - dotted line

It is likely that the partial oxidation of evolved NH_3 is responsible for these discrepancies. TGA-MS studies of NH_4VO_3 [21] indicate that above 300°C the evolved NH_3 partially decomposes to H_2O and N_2 in both oxygen and (to a lesser extent) helium atmospheres.

2NH ₃	+	1.5 O ₂	\rightarrow	N_2	+	3H ₂ O
1M				0.5M		1.5M
1%				0.8%		1.6%

i.e. every 1% of NH₃ oxidised produces 1.6% water vapour

34

Table 1 Th	eoretical decomposition	reactions for ammoniun	n minerals indicating	stoichiometry	of NH3 and
]	H ₂ O evolution, assuming	idealised mineral comp	ositions		

BUDDINGTONITE [22]					
Silicate-bound ammonium:	¹ /2[(NH ₄)2–O]	\rightarrow	NH3	+	$0.5H_2O$
Overall reaction:	NH4AlSi3O8	\rightarrow	NH3	+	0.5H ₂ O
Molar proportions:	1M		1 M		0.5M
Mass proportions / %:	(100%)		6.6		3.5
NH4–ILLITE [22]					
Silicate-bound ammonium:	¹ /2[(NH ₄)2–O]	\rightarrow	NH3	+	0.5H2O
Hydroxyl water release:	[Al ₂ (Si ₃ , Al)O ₁₀ (OH) ₂]	\rightarrow			H_2O
Overall reaction:		\rightarrow	NH3	+	1.5H2O
Molar proportions:	1 M		1 M		1.5M
Mass proportions / %:	(100%)		4.5		7.2
NH4-ALUNITE	1				
Assuming release of hydroxyl wa	ater is analogous to that of aluni	te:			
Reaction:	NH4Al3(SO4)2(OH)6	\rightarrow	NH3	+	3H2O
Molar proportions:	1 M		1 M		3M
Mass proportions / %:	(100%)		4.6		13.8
NH4-JAROSITE					
Assuming release of hydroxyl wa	ater is analogous to that of jaros	ite:			
Reaction:	NH4Fe3(SO4)2(OH)6	\rightarrow	NH3	+	3H2O
Molar proportions:	1 M		1M		3M
Mass proportions / %:	(100%)		3.6		11.3

If the difference between experimentally determined NH_3 and theoretical NH_3 content (NH_3 'missing' in Table 2, column G) is converted to H_2O from oxidation (column H), the value obtained corresponds closely with the difference between the experimental and theoretical H_2O content (H_2O 'excess' in column I).

The distinctive NH₃ release patterns obtained from EGA can be used to identify different NH₄- minerals (Fig. 2), but the determination of NH₄ content is only semi-quantitative due to partial oxidation of evolved NH₃ to N₂ and H₂O. However, detection of NH₃ is enhanced by analysis in an N₂ atmosphere as this generally suppresses NH₃ oxidation.

mple	XRD analysis		Evolved	Kjeldahl
	(1) Major mineral phases	(2) Minor mineral phases	NH3 peak area / area units	NH4 content /ppm
-	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	505	202
-	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	1217	448
∢	Quartz, K-feldspar, Plag.feldspar	Mica	921	298
	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	96	157
	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	114	121
	Quartz, plag. feldspar, K-feldspar	Mica	114	174
	Quartz, plag. feldspar, K-feldspar	Mica, ?calcite	347	286
	Quartz, plag. feldspar, K-feldspar	Mica	759	619
	Quartz, K-feldspar, plag.feldspar	Mica, chlorite	1639	1110
	Quartz, plag. feldspar, K-feldspar	Mica, chlorite	607	722
A	Quartz, plag. feldspar, K-feldspar	Mica	65	105
A	Quartz, plag. feldspar, K-feldspar	Mica, chlorite	355	316
A	Quartz, plag. feldspar, K-feldspar	Mica, chlorite	630	644
	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	435	342
	Quartz, plag. feldspar, K-feldspar	Mica	597	224
	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	87	122
	Quartz, plag. feldspar, K-feldspar	Chlorite, mica	396	309
4	Quartz, plag. feldspar	Chlorite	63	215
A	Quartz, plag. feldspar	Chlorite, mica	805	322
۷	Quartz, plag. feldspar	Chlorite	523	154
¥	Quartz, plag. feldspar	Chlorite, mica	348	263
2	Quartz, plag. feldspar, K-feldspar	Smectite, mica	723	287
	Quartz, plag. feldspar, K-feldspar	Mica	482	214
	Quartz, plag. feldspar, K-feldspar	Smectite, mica	382	354

Table 3 El Cubo samples: mineralogy, evolved NH3 peak area and NH4 content by a modified Kjeldahl method

35

Fig. 2 NH3 evolution profiles of ammonium minerals. 20 mg samples analysed in N2 atmosphere

El Cubo mine samples

Evolved NH₃ profiles of the El Cubo samples are shown in Fig. 3. Most of the samples evolve NH₃ as a sharp near-symmetric peak between 650° and 785°C; several samples also evolve NH₃ below 600°C (marked in bold in Fig. 3).

Whole-rock X-ray diffraction (XRD) analysis indicated that the samples are composed predominantly of quartz, K-feldspar and plagioclase feldspar, with minor chlorite and mica (Table 3). Possible host minerals for NH₄ are K-feldspar (XRD main line at 3.24 Å) and mica (XRD d_{001} at 10 Å). Statistical analysis indicated a weak positive correlation between NH₄ concentration and 3.24 Å XRD intensity (correlation coefficient 0.32), and also with 10 Å XRD intensity (correlation coefficient 0.46), but did not conclusively indicate which mineral was hosting NH₄.

A graph of 'evolved NH₃ peak area' vs. 'NH₄ content by a modified Kjeldahl method' is shown in Fig. 4. A moderate positive linear correlation is evident (correlation coefficient 0.66). This suggest that the EGA data are sufficiently sensitive to differences in NH₄ content for semi-quantitative classification of samples.

Ť
5
ŭ
. Е
-
8
. <u>e</u>
g
2
8
E E
5
ō
5
Ĥ
5
E
8
~
Ë.
ati
- TC
ž
-
3
. <u>च</u>
2
8
Ă
1
¥
Ъ.
2
g
a di
5
õ
S
-
S
2
2
2
-Fi
03
3
ST
60
φ
õ
ź
2
ш
2
9
-

		•						
A	8	ບ	D	ш	ц	U	Н	Ι
Mineral	Atmos.	Theoretical NH3 content / %	EGA NH3 content / %	Theoretical H ₂ O content / %	EGA H2O content / %	[= C-D] NH ₃ 'Missing' / %	[= G× 1.6] Equivalent H2O / %	[= F-E] H ₂ O 'Excess' / %
Buddingtonite	N2	6.6	2.2	3.5	6.8	3.0	4.8	3.3
Buddingtonite	N2/02	6.6	0.7	3.5	10.1	4.5	7.2	9.9
NH4-illite	N_2	4.5	2.5	7.2	11.4	2.0	3.2	4.2
NH4-illite	N2/O2	4.5	1.9	7.2	12.4	2.6	4.2	5.2
NH4-alunite	\mathbf{N}_2	4.6	1.8	13.8	17.7	2.8	4.5	3.9
NH4-alunite	N2/02	4.6	1.6	13.8	17.7	3.0	4.8	3.9
NH4-jarosite	N ₂	3,6	0.9	11.3	15.3	2.7	4.3	4.0
NH4-iarosite	N,/O,	3.6	0.9	11.3	16.3	2.7	4.3	4.9

INGLETHORPE, MORGAN: DETECTION OF AMMONIUM

37

Fig. 3 Evolved NH₃ profiles of El Cubo mine samples, Guanajuato, Mexico. 300 mg samples analysed in N₂ atmosphere

Fig. 4 Evolved NH₃ peak area vs. NH₄ concentration determined by Kjeldahl method for samples from El Cubo mine, Guanajuato, Mexico

Conclusions

Recent developments in NH₄ geochemistry have focused on the association of anomalously high concentrations of NH₄ with metallic and energy mineral deposits and very low-grade metamorphic rocks. The credibility of using NH4 geochemistry in mineral exploration depends on understanding the factors controlling enrichment of NH₄. At present, many studies utilise methods which: (i) provide only whole-rock NH₄ contents; (ii) can not identify NH₄ host minerals (e.g. Kjeldahl method); (iii) may lack sensitivity (e.g. C-H-N analysis); (iv) are prone to interference from other minerals (e.g. infrared spectroscopy). The present investigation demonstrates that evolved NH₃ analysis is capable of distinguishing between several NH₄ minerals (buddingtonite, NH₄-illite, NH₄-alunite and NH₄-jarosite) normally associated with hydrothermal activity and mineralisation, and is sensitive to low-to-trace concentrations of NH₄ (1110–120 ppm levels) in the host rocks of a gold-silver deposit. The method is not fully quantitative because evolved NH₃ partially oxidises to N_2 and H_2O ; however, amounts of NH₃ evolved do show a moderate positive linear correlation with NH₄ content determined by a modified Kjeldahl method.

* * *

The authors are grateful to the following for contributing materials and advice: Prof. Stephen Altaner of the University of Illinois for supplying the buddingtonite, NH4-illite and NH4-alunite samples; Dr John Ridgway of the British Geological Survey for providing the initial impetus for this investigation and also for supplying the samples from El Cubo mine, and finally Don Bradley of the British Geological Survey for NH4 analyses (Kjeldahl method) and helpful conversations. This paper is published by permission of the Director, British Geological Survey (Natural Environment Research Council).

References

- 1 R. A. Kydd and A. A. Levinson, Appl. Geochem., 1 (1986) 407.
- 2 E. J. Sterne, R. C. Reynolds and H. Zantop, Clays Clay Miner., 30 (1982) 161.
- 3 L. B. Williams, H. Zantop and R. C. Reynolds, J. Geochem. Explor., 27 (1987) 125.
- 4 J. Ridgway, J. D. Appleton and A. A. Levinson, Appl. Geochem., 5 (1990) 475.
- 5 F. C. Loughnan, F. Ivor Roberts and A. W. Lindner, Miner. Mag., 47 (1983) 327.
- 6 T. C. Juster, P. E. Brown and S. W. Bailey, Am. Miner., 72 (1987) 555.
- 7 S. H. Bottrel, L. P. Carr and J. Dubessy, Miner. Mag., 52 (1988) 451.
- 8 L. B. Williams and R. E. Ferrel, Clays Clay Miner., 39 (1991) 400.
- 9 R. C. Erd, D. E. White, J. J. Fahey and D. E. Lee, Am. Miner 49 (1964) 831.
- 10 M. D. Krohn and S. P. Altaner, Geophysics, 52 (1987) 924.
- 11 J. H. L. Voncken, Geologica Ultraiectina., 65 (1990) 23. [ISSN 0072-1026].
- 12 S. Higashi, J. Miner (1982) 138.
- 13 S. P. Altaner, J. J. Fitzpatrick, M. D. Krohn, P. M. Bethake, D. O. Hayba, J. A. Goss and Z. A. Brown, Am. Miner., 73 (1988) 145.

- 14 E. V. Shannon, Am. Miner., 12 (1927) 424.
- 15 R. S. Roche, D. R. Salomon and A. A. Levinson, Appl. Geochem., 1 (1986) 619.
- 16 J. Ridgway, Rep. Brit. Geol. Surv., WC/91/41 (1991).
- 17 A. D. Bradley, B. P. Vickers. D. Peachey and A. A. Levinson, Appl. Geochem., 5 (1990) 471.
- 18 T. J. Shepherd *et al.*, Final report (1) to the CEC [contract No. MA1M-0027-UK]. British Geological Survey, Nottingham NG12 5GG, UK. 1990, p. 109.
- 19 J. Ridgway, B. Martiny, A. Gomez-Cabellero, C. Macias-Romo and M. G. Villasenor-Cabral, J. Geochem. Explor., 40 (1991) 311.
- 20 D. J. Morgan, J. Thermal Anal., 12 (1977) 245.
- 21 U. Von Sacken and J. R. Dahn, J. Power Sources., 26 (1989) 461.
- 22 J. H. L. Voncken, R. J. M. Konings, J. B. H. Jansen and C. F. Woensdregt, Phys. Chem. Miner., 15 (1988) 323.

Zusammenfassung — Die Assoziation von ungewöhnlich hohen Ammoniakpegeln mit sowohl Metall- als auch Energieminerallagerstätten ist ein potentielles Mittel bei der Mineralerforschung. Übliche geochemische Methoden zur Detektion von NH4 liefern oft nur Vollgestein NH4 Werte und identifizieren nicht die einzelnen NH4 Wirtsminerale. Es fehlt ihnen auch an Empfindlichkeit oder sie neigen zu Überlappung. Es wurde gezeigt, daß die Bestimmung freigesetzten Ammoniaks die Unterscheidung verschiedener NH4-haltiger Minerale ermöglicht und in Gestein mit Silber-Goldadermineralisation NH4-Werte bis hinab zu 120 ppm bestimmen kann. Ein vollquantitative Bestimmung von NH4 ist mit Hilfe dieser Methode nicht möglich, da ein Teil des aus dem Mineral freigesetztem NH3 beim Erhitzen oxidiert wird; auf alle Fälle zeigt die freigesetzte NH3-Menge eine mäßige positive Korrelation mit dem mit Hilfe einer modifizierten Kjeldahl-Methode bestimmten NH4-Gehalt.